Dask
If you want to try out this notebook with a live Python kernel, use mybinder:
Dask.array
A vaex dataframe can be lazily converted to a dask.array using DataFrame.to_dask_array.
# | x | y | z | vx | vy | vz | E | L | Lz | FeH |
0 | -0.777470767 | 2.10626292 | 1.93743467 | 53.276722 | 288.386047 | -95.2649078 | -121238.171875 | 831.0799560546875 | -336.426513671875 | -2.309227609164518 |
1 | 3.77427316 | 2.23387194 | 3.76209331 | 252.810791 | -69.9498444 | -56.3121033 | -100819.9140625 | 1435.1839599609375 | -828.7567749023438 | -1.788735491591229 |
2 | 1.3757627 | -6.3283844 | 2.63250017 | 96.276474 | 226.440201 | -34.7527161 | -100559.9609375 | 1039.2989501953125 | 920.802490234375 | -0.7618109022478798 |
3 | -7.06737804 | 1.31737781 | -6.10543537 | 204.968842 | -205.679016 | -58.9777031 | -70174.8515625 | 2441.724853515625 | 1183.5899658203125 | -1.5208778422936413 |
4 | 0.243441463 | -0.822781682 | -0.206593871 | -311.742371 | -238.41217 | 186.824127 | -144138.75 | 374.8164367675781 | -314.5353088378906 | -2.655341358427361 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
329,995 | 3.76883793 | 4.66251659 | -4.42904139 | 107.432999 | -2.13771296 | 17.5130272 | -119687.3203125 | 746.8833618164062 | -508.96484375 | -1.6499842518381402 |
329,996 | 9.17409325 | -8.87091351 | -8.61707687 | 32.0 | 108.089264 | 179.060638 | -68933.8046875 | 2395.633056640625 | 1275.490234375 | -1.4336036247720836 |
329,997 | -1.14041007 | -8.4957695 | 2.25749826 | 8.46711349 | -38.2765236 | -127.541473 | -112580.359375 | 1182.436279296875 | 115.58557891845703 | -1.9306227597361942 |
329,998 | -14.2985935 | -5.51750422 | -8.65472317 | 110.221558 | -31.3925591 | 86.2726822 | -74862.90625 | 1324.5926513671875 | 1057.017333984375 | -1.225019818838568 |
329,999 | 10.5450506 | -8.86106777 | -4.65835428 | -2.10541415 | -27.6108856 | 3.80799961 | -95361.765625 | 351.0955505371094 | -309.81439208984375 | -2.5689636894079477 |
| Array | Chunk |
Bytes | 7.92 MB | 7.92 MB |
Shape | (330000, 3) | (330000, 3) |
Count | 2 Tasks | 1 Chunks |
Type | float64 | numpy.ndarray |
|
|
| Array | Chunk |
Bytes | 2.64 MB | 2.64 MB |
Shape | (330000,) | (330000,) |
Count | 11 Tasks | 1 Chunks |
Type | float64 | numpy.ndarray |
|
|
# | x | y | z | vx | vy | vz | E | L | Lz | FeH | r |
0 | -0.777470767 | 2.10626292 | 1.93743467 | 53.276722 | 288.386047 | -95.2649078 | -121238.171875 | 831.0799560546875 | -336.426513671875 | -2.309227609164518 | 2.9655450396553587 |
1 | 3.77427316 | 2.23387194 | 3.76209331 | 252.810791 | -69.9498444 | -56.3121033 | -100819.9140625 | 1435.1839599609375 | -828.7567749023438 | -1.788735491591229 | 5.77829281049018 |
2 | 1.3757627 | -6.3283844 | 2.63250017 | 96.276474 | 226.440201 | -34.7527161 | -100559.9609375 | 1039.2989501953125 | 920.802490234375 | -0.7618109022478798 | 6.99079603950256 |
3 | -7.06737804 | 1.31737781 | -6.10543537 | 204.968842 | -205.679016 | -58.9777031 | -70174.8515625 | 2441.724853515625 | 1183.5899658203125 | -1.5208778422936413 | 9.431842752707537 |
4 | 0.243441463 | -0.822781682 | -0.206593871 | -311.742371 | -238.41217 | 186.824127 | -144138.75 | 374.8164367675781 | -314.5353088378906 | -2.655341358427361 | 0.8825613121347967 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
329,995 | 3.76883793 | 4.66251659 | -4.42904139 | 107.432999 | -2.13771296 | 17.5130272 | -119687.3203125 | 746.8833618164062 | -508.96484375 | -1.6499842518381402 | 7.453831761514681 |
329,996 | 9.17409325 | -8.87091351 | -8.61707687 | 32.0 | 108.089264 | 179.060638 | -68933.8046875 | 2395.633056640625 | 1275.490234375 | -1.4336036247720836 | 15.398412491068198 |
329,997 | -1.14041007 | -8.4957695 | 2.25749826 | 8.46711349 | -38.2765236 | -127.541473 | -112580.359375 | 1182.436279296875 | 115.58557891845703 | -1.9306227597361942 | 8.864250273925633 |
329,998 | -14.2985935 | -5.51750422 | -8.65472317 | 110.221558 | -31.3925591 | 86.2726822 | -74862.90625 | 1324.5926513671875 | 1057.017333984375 | -1.225019818838568 | 17.601047186042507 |
329,999 | 10.5450506 | -8.86106777 | -4.65835428 | -2.10541415 | -27.6108856 | 3.80799961 | -95361.765625 | 351.0955505371094 | -309.81439208984375 | -2.5689636894079477 | 14.540181524970293 |